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INTRODUCTION

. Let V be a nonsingular A-hermitian space of dimension n over a field K
and U (V') the unitary group on V. Under the assumptioﬁ that K is a finite field
of characteristic different frém 2 and V is isotropic, Ishibashi showed in [12] that
U(V) is generated by three elements. Further, in fact, he proved that when the -

unitary group U(V) is the symplectic group Sp(V), then U (V) is glene'rated'by'

just two elements.

This result was first refined by the works of Earnest, Ishibashi, and others in

[2] and [7]. There the case where U(V) is the orthogonal group O(V) was studied.

The restrictions of isotropy and characteristic were removed, thus, showing that
when U(V) = O(V),U(V) is generated by two elements. |

The purpose of this pap.er is to again refine Ishibashi’s 6rigina1 result. The
paper’s main theorem will show that all unitary groups over finite fields of odd
characteristic are generated by orﬂy two elements. The bulk of the work, here, is in
removing the restriction of isotropy when V' is a A-hermitian spa{ce which is not a
quadratic space and in showing that when U(V) # O(V) and U(V) # Sp(V),U(V)
is generated by two elements. The proof of this maﬁn result occurs in Chapter 4.

.Prior to that, however, Chapter 1 will establish some key ideas about the
underly"ing finite field. It defines the concept of an involution on a field, establishes
the surjectivity of the norm and trace maps, énd defines some naturally ocCurring
subsets of the field.

Next, Chapter 2 will detail what a& A—hermitian space is and define the

special cases of A—hermitian spaces. Chapter 2 also discusses classification of
. .
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2
these spaces and the property of isoﬁropy. Chapter 2 is where one sees the ability
to remove the restriction of isotropy from nonquadratic A—hermitian spaces.

Finally, Chapter 3 develops the idea of the unitary groups over A—hermitian

spaces. The generating maps used in the main theorem will be defined along with

some essential identities for combining them.




CHAPTER 1
THE UNDERLYING FIELD

Throughout this chapter, all fields under consideration will be assumed to
be finite. Moreover, for the éntirety of this paper, all fields will be assumed to have
odd characteristic. The theory which will be developed herein is fundamentally
different for finite fields of characteristic two and therefore will not be treated at -
this time. |

Consequently, the underlying field K considered here has order g = p™ for
some odd prime p and natural number m.. The multiplicative group K = K \{0}

is well known to be a cyclic group. Here and throughout the remainder of this

| paper, a will denote a fixed generator of this group; that is, K = (a). -

1. Some Important Maps of the Underlying Finite Field.

Let F be a subfield of K. Then K is known to be a ﬁmte Ga101s extension
of F. Let Aut FK {o1,...,0n} be the Galois group of K over F. In fact, Aut FK
is a cyclic group generated by the Frobenius automorphlsm o defined by o(a) = qe
for a € K, where £ = |F]. '

| The first two maps to be defined and discussed are the norm and trace

maps of the extension K/F. It will be shown that these maps are surjective in the

present context.

1.1.1 Definition. The norm map of K/F is defined as N[K/F](k) -
o1(k)oa(k) ... on(k) for k € K.




' 1.1.2 Definition. The trace map of K/F is defined as T[K/F|(k) = o1(k) +
oo(k) + -+ on(k) fork e K.

Most of the time, the norm and trace of an element k € K will be denqtéd

N(k) and T'(k) since the fields over which they are defined will be obvious to

discern.
1.1.3 Lemma. The norm N[K|F] is surjective.

Proof. Now, N[K/F](a) = N(a) = acfaf ..o = of"~1/t-1 But this im-
plies that (N(a))?~! = of"~! = 1. What is more is that this is the smallest

such power. For if there were a smaller power s for which (N(a))* = 1, then

(a%n-__ll')s = o™ = af""1/t where £ —1 = st, t € N and o&"~1/t = 1. This,

of course, cannot happen since K is geherated by o and has order " — 1. Hence,
N(a) haé order £ — 1. |

Note, however, that N(K) = (N(a)) since K = (a). Thus, |N(K)| =f-1

Also, |F| = £ — 1. Hence, |[N(K)| = |F|. Theréfore, N[K/F] is surjective. o

1.1.4 Lemma. The trace T[K/F) is surjective.

~ Proof. Tt sufﬁces to show that 1p has a pre-image iﬁ lK ) _sincé lf'generates
F additively. Now, by Dedekind’s theorem on the independencé of characters, -
{o1,02,...,0,} is linearly dependent over K. Thus, there exists 5' € K such that
o1 (5) + 02(6) + -+ + 0,(6) does not equal zero. But this is T[K/F]((S) = T(6).

Hence, T' (7%375) = -T%—(S)T(é) = 1p. Therefore, the trace is surjective. [

These two surjections will prove to be invaluable in establishing important -

facts about hermitian spaces and their unitary groups in the next two chapters. |

Finally, the coﬁcept of an involution of the finite field K "m'ust be set forth.




1.1.5 Definition. An involution of the finite field K is an é,ntiautomorphism 2

. of K of order < 2.

Thus, (a + b)* = a* + b*, (ab)* = b*a*;l* =1 and (a*)* = a for a,b € K.

One observes immediately that the concept of an antiautomorphism of K is mute

" since K is a field and has commutative multiplication. Hence, (ab)* = b*a* = a*b*.

Also, the identity map over K is trivially an involution. However, it will be

involutions which are different from the identity map which will be of primary

interest. Further if it is assumed that the involution * fixes F' in this case, then -
this map sending a to a* for a € K- is an element of order two in the Galois grbup
AutpK. Thus, the fixed field of * is a subfield of index two in K. This idea will

be revisited later.

2. Si)ecial Subsets of the Underlying Finite Field.

Let K be an arbitrary finite field of odd characteristic.. Let = K be a
fixed generator of the mulltiplicative cyclic group K. First, consider the subset

of elements in K consisting of the squares of nonzero elements of K. This set is

denoted K2
1.2.1 Definition. K2 ={k € K | k =b? for someb € K}.

It is well known that K2 has exactly 4|K| elements [17]. With this in mind,

one can see that these elements are precisely the even powers of a.
1.2.2 Lemma. K?={o?* |k=1,2,...,3|K | }.

Pfoof. Let S ={a®* |k =1,2,... ,%—[K[} Clearly, S C K?, since for any k, a?* =

(a*)2. One also notes from its definition that |S| = —;—IK |. Thus, S is a subset of

K2 which contains the same number of elements as K2. Hence, K2 = 5. 0O




Likewise, K\K? is comprised of the odd powers of the generator .

This leads to the consideration of two sets of differences which appear nat-
urally in the development of the main theorem in Chapter 4. They are the two

sets containing the differences of even and odd powers of «a respectively.
1.2.3 Definition.

Ex ={z—y |z =0o"and y = o®,r,s even integers}

={z-y|zye K}

1.2.4 Definition.

Ok ={z—-y|z=a",y=0c*rs0dd intégers}

={IL‘—yI.'B,y€K\K2}.

Ek is a set which is particularly interesting, not only because of the natural
way in which it arises, but because this set often encompasses all of K. Clearly
0€&k,sincex—x=0Vr € K 2. The foilowing lemma also shows that most of

the elements of K are members of £k as well.
1.2.5 Lemma. Let § € K such that 6 # +1. Then 6 € &k.

Proof. Let ¢ = &1 y = &1 Both z and y are elements of K since & # +1 and
K is not of characteristic two. Further, 72 — 32 = (-%1)2 — (§5—1)2 = L[(62+26+

1)— (62 —-26+1)] = 148 =6 O

So, £k contains all of K with the possible exception of the elements +1.
In fact, one observes readily that if K = {—1,0,1}, then £x = Ok = {0}. Thus,
any finite field with only three elements will present a problem when w()rking‘ with

Ex. However, when |K| > 3, one sees that {£1} C £k or {1} C Ok.

6




1.2.6 Lemma. Let |K|>3. Then {£1} C £k or {£1} C Ok.

" Proof. Let |K| > 5. It suffices to show the result for F, = Z/pZ, the field of p

elements, since any other field F' of characteristic p contains a copy of F,. Namely,
it contains {mlr | m € Z}. So, no harm results in identifying F, with this subfield

of F'.

Hence, {1,2,3,4} C K since |K| > 5. One observes, also, that 1,4 € K2

regardless of p since 1 = 12 and 4 = 22. Now, if 2 € K2, then {£1} C &k since
9—1=1land1—2=-1 If2¢€ K\K? and 3 € K2, then {1} C Ex since

4—3=1and 3—4 = —1. Finally, if 2,3, € K\K?2, then {£1} C Ok since3-2=1

and2-3=-1. O

From the previous discussion and Lemmas 1.2.5 and 1.2.6, one sees that

either &g = K or £k = K\{#1} and {1} C Ok.

Finally, another set which occurs nafurally when developing the theory of
unitary groﬁps is a set denoted by C in the literature. This section will conclude
with the set’s deﬁnition and the dgtermina’cion of its relationship to the fixed field
of the involution *. First, consider the fixed field Ky of .;uhe involution * on the

ﬁnitef field K.
1.2.7 Definition. Ky = {k € K | k* = k}.

K is indeed a subfield of K since (a — b)* = a* —b*=a—band (ab”')* =
a*(b*)™! = ab™! for all a,b € Ko. Let B be a fixed generator of the multiplicative
cyclic group K. Note also that 8 # 1 since charK # 2. As a matter of notation,
the subset of any given set which is fixed by the involution * will be denoted by the
subscript zero. Fu;t.her, as alluded to earlier, when one views K as an extension

of the finite field Kj, then [K : Kp] = 2. It is also important to note here that if




the involution * is different from the identity then * must be the unique Frébenius

automorphism, o, which sends element a of K to af, where |Kp| = £.

Moreover, in this context, Ko C K2.
Lemma 1.2.8. Let K be a finite field with * # 1. Then Ko C K2.

Proof. Let § € Ko. By definition, 6* = 6. But 6* = 6% where |Kp| = £ since * # 1. |
Thus, §¢ = § implying 6~ = 1. Now, § = a® for some natural. number s since
§ € K and K = (). Hence, @*=1) = 1. This implies that £2 — 1 divides s(£ — 1)
since o(a) = £2 — 1. Therefore, (¢4 1)|s. However, £+ 1 is even since £ is odd. So

s must be even. Whence, by Lemma 1.2;2, §eK?and Ko C K2 O

Next, let A be an element of K such that AA* = 1. It is this element which
will give shape to the structure of the A—hermitian space over K which will be
discussed in the next chapter. The set C consists of the elements z E K such that

z = —Az*. Equivalently;
1.2.9 Definition. C = {z € K | z + A\z* = 0}.
1.2.10 Lemma. If C # {0}, then C = cKp for any0#ceC.

Proof. Let 0 # ¢ € C. Take any bin C. Since one has c+}\c* =0 and b+)\5* =0,
it follows that be™! = —Xb*(=Ac*)~! = AA~1b*(c*)~! = b*(c™1)* = (bc™)*. This
'means that bc™! € Kp, and so C C cKp. '
Let ck € cKo. ck + A(ck)* = ck + Ac*k* = ck + Ac*k, since k € Ky. Thus,
ck + Mck)* = k(c+ Ac*) = k0 = 0. Hence, ck € C and C C cKj. Therefore,
C=cKy. 0O |

Thus, one has cKgp = {¢f*|i=1,2,...,£—1}U{0}. Lemma 1.2.10 coupled
with what has been shown about the set £x will be instrumerital in showing the

generation of the unitary group over a two dimensional hermitian space.

8




CHAPTER 2
A-HERMITIAN SPACES AND THEIR PROPERTIES

This chapter addresses some of the essential properties of A—hermitian
spaces used in the study of unitary groups in Chapter 3 and in the discuslsion' of
the main theorem in Chapter 4. The chapter consists of three subsections. The
.ﬁrslt subsection defines a A—hermitian space and details some important struc-
tural elements common to all A—hermitian spaces. Next, the second subsection
sets forth the notion of isotropic spaces and discusses some pértinent results fdf
l)\—hermitian spaces. Finally, the third subsection formalizes what i'slmean't by
‘isometric A—hermitian spaces. The three special types of )\—herfhitian spaces giv-
ing rise to unitary groups afe defined. Discussion regarding classification of these

special spaces up to isometry is also provided in this subsection. -

1. A—Hermitian Spaces.

Let V be an n-dimensional left vector space over a field K with involution
* as described in Chapter 1. Any further mention of the term vector space refers
- to this description. Note that the underlying field need not be finite to achieve

the results of this subsection.

2.1.1 Deﬁnition. A sesquilinear form on'V is a mapping f : V. xV — K sﬁcﬂ
that | |
i) f(m1+22,y) = f(@1,9) + f(32,9) V 21,30,y €V,
i) f@y ) = F(@m) + F(@92) V291,10 €V,
i) f(az,y) = af(z,y) Va € K,z,y € V, and

iv) f(z,by) = f(z,y)b* VbE K, z,y € V.




The 'm'ap I’ is a multiplicative homomorphism, since for v,y € K () =

2.1.2 Definition. Let \ be a fixed element of K with 'AA* = 1. A sesquilinear

form f on 'V satisfying f (m, y)* = M (y,z) Vz,y € Viscalleda A—hermitian form

on V. In this case, (V, f) is called a A—=hermitian space.

2.1.3 Definition. Two vectors z,y in a A—hermitian space (V, f) are orthogonal
if f(z,y) = 0. Let (U, f) be a subspace of (V, f). Define the orthogonal
complement of U in V to be U+ = {veV | flv,u) =0V ueU}.

Notice that the condition of orthogonality is always symmetric since

f(z,y) = 0 implies f(y,z) = A71f(z,y)* = A710* = A"10=0.

2.1.4 Definition. The radical of a A—hermitian space (V, f) is rad V =yt
={veV|flvz)=0VzeV}

2.1.5 Definition. A A—hermitian space (V, f) is said to be nonsingular if and
only if rad V = {0}. | '

A Mhermitian space (V, f) is nonsingular if and only if there is no vec-
tor in V other than 0 which is orthogonal to the whole space. From this point
férward, all A—hermitian spaces are assumed to be nonsingular. Notice that non- -
sipgularity implies that for any nonzefo vector z in V there is a nonzero vector

y such that f (m,y) = 1. Directly from the definition, nonsingularity implies that

‘there is 0 # z € V such that f(z,2) = 6 # 0. Hence, let y = (6~ 1)*2 and |

f@y) = f(@,(671)'2) = f(z,2)67) = 667} = 1.

Further,if A\ # —1lor* #1, there is a vector u iﬁ V such that f(u,u) # 0.
To see this choose a vector z in V. If f(z,z) 7é 0, then let u = z. Otherwise, choqse |
another vector y in V such that f(z,y) = 1. Again, if f(y,y) # 0, then let u = 4.
If f(y,y) = 0, then consider I' : K — K defined by I'(vy) = y*y1 fof.'y € K.

-10




(rv2)* (rv2) 7 = wrie it = (D (%) = T(n)T(72). If A # —1, then

—A* # 1. This implies I'(§) = 6*6~! =1 # —A* for all 6 € Ko. If * # 1, then for

§ € K\C,8+ X6* #0. Thus, —=\* # 6*6~1 =T'(6). So if f(y,y) = 0, then there is
a 6 € K such that 6*6! # —\*. Let u = z+ 6y and f(u,u) = f(z +6y,z+6y) =
f(z,x) + 6" f(z,y) +6f(y,z) + 66" f(y,y) = 6* + A*6 # 0.

2.1.6 Definition. A basis B = {v1,v2,...,v,} for a A—hermitian space (V, f) is

called an orthogonal basis if f (vi,vj) =0 for i # j.

2.1.7 Proposition. Let (V, f) be an n—dimensional A—hermitian space over K -

* with A # —1 or* # 1. Then V has an orthogonal basis.

Proof. The probf proceeds by induction on the dimension n of V. The result is
vacu@uély true for n = 1. | | |

Suppose that there is an orthogonal basis for any (n — 1)—dimen§iona1
A—hermitian space over.K with A # -1 6r * # 1. Let (V,f) be a similarly
described n—dimensional A-hermitian space over K. Since A # —lor* # 1, choose
a basis S7 = {u1,ug,...,up} of V 50 that.f(ul,ul) #0. Let y; = u; — ; :::Zi ull

for i = 2,...,n and consider W = span{ys,...,yn}. Note that W is an (n —

1)—dimensional A—hermitian space over K with f(u1,y;) =0 fori=2,...,n. By |
" the inductive hypothesis, W has an orthogonal basis, say {#2,...,2n}. Therefore,
{u1,2,...,2,} is an orthogonal basis of V. [ |

2.1.8 Definition. Let (V, f) be a \—hermitian space and let (U, f) and (W, f) be
subspaces of (V, f). V is the orthogonal sum of U and W, denoted V = U L W, if

) V=Ue®W, and

i) flu,w)=0YueU weW.

11




2.1.9 Proposition. Let (V, f) be a A—hermitian space and let (U, f) be a non-
singular subspace of (V,f)- Then V =U LU, '

Proof. For the proof, see [17; Theorem 7.1.4]. O

Also, for any basis B of a A—hermitian space (V, f), one can associate to

the form f a matrix w1th respect to B.

2 1.10 Deﬁmtlon The matrix of f with respect to a basis B, denoted MB is

(f(vz,vg)) 1<i, j<n.

2.1.11 Proposition. Let B = {ej,eg, - ,e,} and B' = {el,ez, -+ ,el} be bases
of a A—hermitian space (V, f). Let P = (p;;) be such that e}, = Ei=1 pije;. Then
Mp =:PtMBP*, where P* denotes the transpose of P and P* = (p};). '

Proof.

M:

(PtMBP )‘LJ =

<Z piif(ex, 6h)> Phj

k=1

>
Il

1

n
> priph;f(ex, en)

h=1

ol
NE

b
Il
—

Il

MM:

h] (ek)eh
<ek,zphjeh>
h=1 o
=
z%%zmﬁ
h=1

= (Mp);; O

I
/:”\ i M: i [\/]:

Since (V, f) is nonsingular, there is a basis B of V with detMp # 0. Because

- of the change of basis formula in Proposition 2.1.11, one can easiiy see that for any

12




other basis B’ of V the matrix Mp: has a nonzero determinant as well. It follows
then that a A—hermitian space (V, f) is nonsingular if and only if detMp # 0
for every basis B of V. More specifically, if A # —1 and * # 1, then the matrix

associated to an orthogonal basis of V has a nonzero determinant implying for

| such a basis B = {ej, eg,...,e,} that f(e;, e;) # 0 for i =1 to n.

2. Isotropy of A—Hermitian Spaces.
For the purposes of this subsection also, it is again the case that the un-

derlying field need not be finite.

2.2.1 Definition. For a A—hermitian space (V, f), a nonzero vectorv € V is said

to be isotropic if f(v,v) = 0. Otherwise, v is anisotropic.

2.2.2 Definition. A A\—hermitian space (V, f) is said to be isotropic if V contains

an isotropic vector. If V contains no isotropic vectors, then the space (V, f) is
anisotropic.

2.2.3 Definition. A hyperbolic plane, H, over K is a two dimensional
A—hermitian space which has a basis {u,v} with f(u,u) = f(v,v) = 0 and

flu,v) =1 The vectors u and v are called a hyperbolic pair.

~ The following discussion shows that for an isotropic vector z in a

A—hermitian space (V, f), a vector y can be found such that {z,y} is a hyperbolic

pair. First, Lemma 2.2.4 pertains to the specific case when A = ~1 and * = 1.

Such a A—hermitian space is called a symplectic space.
2.2.4 Lemma. Every nonzero vector ina symplectic space is isotropic.

Proof. Let (V,f) be a sympl.ectic space. By deﬁnitionlof the space, f(z,z)* =

f(z, :z:) = —f(z,z) for every 0 # z € V. Hence,.2f(:z':,:z:) = 0. Thus, f(z,z) =0

since K is not of characteristic two. 0O

13
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Therefore, every symplectic spéce is clearly isotropic. Also, since the sym-
plectic space (V, f) is assumed to be nonsingular, for any vector z in V' there lis
ay € V such that f(:z:,y). = 1. In light of Lemma 2.2.4, {z,y} is a hyperboiic
pair. Further, this result is expanded to nonsymplectic A—hermitian spaces in the

following proposition.

2.2.5 Proposition. Let (V, f) be a A—hermitian space. If z is an isotropic vector |

in V, then there exists y € V such that {z,y} is a hyperbolic pair.

j—’roof. The previous discussion.providels the result for symplectic spaces, so let
(V, f) be a nonsymplectic A—hermitian space. Since (V, f) is nonsinéular, there
exists a vector z € V so that f(z,z2) = 1. If 2 is isotropic, then taking y = 2
achieves the desired result. So suppose 2 is anisotropic.. Let v = —=271f(z,2)
and consider the vector y = z + yx. The vector y is equal to 0 if and only if
2z = ~f(z,2)z. But if 22 = —f(2,2)z, then 2 = f(z,22) = f(z,~f(2,2)z) =
—f(z,2)*f(z,z) = 0. Thus, y = z + vz # 0 since K has odd charaéteristi;:.
Now, f(u,) = f(z+1,+72) = f(5,2) + 7" £(2,2) + 75 (2,2)

+ f(@,3) = £(22) + YA 4y = f(2,2) — f(2,2) = 0. Also, f(z,9) = f(z,z +
fya:) = f(z,2) + v* f(z,z) = 1. Therefore,{z,y} is éhyperbolic pair. O |

It follows directly from Proposition 2.2.5 that when (V, f) is a noﬁsympléc— ;

tic A—hermitian space and dimV =2,V is isotropic if and only if V =H.
3. Classification and the Special )\—Hermitian- Spaces.

2.8.1 Definition. Two A—hermitian spaces (V, f1) and (W, f2) are said to be

isometric, denoted V = W, if there is an isomorphism ¢ : V. — W such that
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fa(p(z),0(y)) = fi(z,y) for every z,y € V. The isomorphism ¢ is called an
isometry. ' |
The isometric rela;cionship 2 clearly defines an equivalence relation on the
collection of A—hermitian spaces over K. The question then becomes how to
classify A—hermitian spaces up to isometry. The answer to this question.-is not
completely known for general fields. So at this point, K must again be‘assume'd
to be finite, in Whicﬁ case the ‘classiﬁcatior.l is completely known.
| Moreover, a;tténtion is now fdéuséd on the special )\—hermitidn spaces
needed for the study of unitary groups. 'They are the quadratic, symf)lectic, and‘
' | hermitian spaces. ‘Recall thaf a symplectic space was previously defined as a
~1-—hermitian space with * = 1. A quadratic space is a 1—hermitian space with
* = 1. Finally, the term hermitian space will be used to describe a 1—hermitian
space over K with * # 1.
Now in thé case of quadratic spaces, it is well known that ;cwo spaces are

isometric if and only if their dimensions and discriminants are equal [17].

2.3.2 Definition. Let (V,f) be a quadratic space and B a basis of V. The
discriminant of V is dK? in K /K? where d = detMp.

Considering Proposition 2.1.11,‘ this deﬁnition'makes sense. There one sees.
that for any two bases B and B’ of V, detMB: = det(PtMgP*) = (detP)?detMp.
This is true sincé detP? = detP and P* = P since * = 1. Thus, the djscrimina,ht
for any two bases differ‘ only by the square of a nonzero element of K. Therefore,
. as an element of K /K 2 'is independent of the choice of basis. Because' of the
uniqueness of the discriminant dV for a quadratic space (V, f), it has been shown
that there érg only two distinct types of spaces for any given dirriension n up to

- isometry. It is the case that V 2 (1,1,...,1) (n ones) or V & (1,1,...,1,6) (n—1
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ones) where § € K\K?[11). Here the noto_tioh (a1, ,an) means that there exists
an orthogonal basis {v1,---vn} of V such that fui,v;)=a;fori=1,....n

In the case of hefmitian spaces over K, one simply needs dimension in order

to classify spaces. As is shown in the following proposition, this is due to the fact

that an orthogonal basis, known to exist by Proposition 2.1.7, can be converted

into an orthonormal basis.

2.3.3 Proposition. Let (V, f) be an n dimensional hermitian space over K. Then

V has an orthonormal basis.

Proof. Let {v1,vs,--+ ,un} be an orthogonal basis of V. f(z,z)* = f(z,z)Vz €V
since V is hermitian. So, for ¢ =1,--- ,n, f(v;,v) = a; € Kp. By the surjectiv-
ity of the norm map shown in Lemma 1.1.3, there exists an a; € K such that

N(e;) = a;. Hence, {v],v5, -+ ,v},} is an orthonormal basis for V where v =

1 M ! N — 1 . 1 . 1 1 —
ai'Uz Slncef(viavi) =f (a-v“ a'vz) = f('U'n v;) = N(az) =1. O

1 7
Thus, there is only one distinct hermitian space up to isometry for any
given dimension n. Namely, for &imV =n, V = (1,1,---,1) (n ones).
The following proposition provides a similar, but more general result for

‘A—hermitian spaces over k where * # 1.

.2.3.4 Proposition. Let (V, f) be an n dimensional A—hermitian space over K |

where * # 1. Then there exists an a € K such that V ™~ (qg,q,...,a)(n a’s).

Proof. Again let {v1,v2,: - 3 ,Un} be an orthogonal basis_ of V. By Hilbert’s Theo-
rem 90, there exists a &k e K such that k(k*)" A since AX* = N(A) = 1. Thus,
let @ = k*. Then I'(a) = a*a™! = (k*)*(k*)~! = k(k*)™! = X, f(vi,v;) =b; #0
for i = 1,...,n since * # 1 and V is nonsingular. Further, I'(b;) = b}b; ! =

f(vi,vi)* f(vi,v;)™* = X for i = 1,...,n by definition of the A—hermitian form
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f. Hence, a™1b; € ker(T') = Ko = N(K) for i = 1 to i = n, because the norm
map is surjective. This implies that for 1 <1 < h, there exists ¢; € K such that
N(c;) = a~1b;. Thus, b; = aN(¢;) for i = 1,...,n. Therefore, {v},...,v}} where
vi = c;'v; is the desired orthogonal basis, since f(v},v!) = f(c; lvz:,.ci' ly)

(N(c:)) 72 f (i, v) = (N(c:))"1b; = a. Whenoe', V=(a,...;a) (nas). O

It is important to note here also that, in this context, any two dimensional

A—hermitian space where * # 1 is isotropic. This is due to the fact that ~1 € -

K, and, hence, there exists ¥ € K such that N (v) = —1. Since the space isl
isometric to {a, a) for some a € K, there exists an orthogonal bésis {v1,v2} where
f(v1,01) = f(v2,v2) = a. Therefore, f(vi+yvz, v1+7v2) = f(v1, v1)+y* f (v1,v2)+
vf(va,v1) +97* f(va2,v2) =a —a = 0. As before, v1 + yug # 0.since vy +yvg =0
would imply a = f(v1,v1) = f(~v2, —yv2) = fy'y*f(vg,vg) = —aq ano K is not of
characteristic two. |

Finally, consider the classification of symplectic spaces over K. Here, as in

the case of hermitian spaces, only dimension is needed in order to classify spaces.

2.3.5 Proposition. Every symplectic space is the orthogonal sum of hyperbolic
planes and, therefore, even dimensional and up to isometry determined by its

dimension.

Proof. It follows from Lemma 2.2.4 and its subsequent discussion that one can

construct a basis of hyperbolic pairs. This is known as a sy'mplectio basis. This
fact and the orthogonal decomposition provided by Prop.osition 2.1.9 shows that

every symplectic space is the orthogonal direct sum of hyperbolic planes'énd,

- therefore, even dimensional. Further, it is well known that any two hyperbolic

planes are isometric [15]. Thus, up to isometry, there is only one distinct space of

a given even dimension. [
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CHAPTER 3
THE UNITARY GROUP AND ITS GENERATORS

Chapter 1 established some key facts about the underlying finite field K,
while Chapter 2 highlighted properties of the A-hermitian spaces (V, f) over K.

Chapter 3 will now introduce the concept of the unitary group.

The chapter has two subsections. The first formalizes the notion of the
unitary group of a A—hermitian space, while the second defines some of the gen-
erating maps of the unitary group. Finally, the subsection concludes with some

useful identities involving these generating maps. '

1. The Unitary Group. '

Let K be a finite field of odd characteristic with involution ¥ View K as a
quadratic extension of its fixed field Ko. Let V be an n dimensional ﬁonsin'guiar
A—hermitian space over K wifh A—hermitian form f. Recali from the i)févious
chapter that an isomorphism ¢ from a A-hermitian space V to a A—hermitian spabe
~ W which preserves the “distancé” between vectors is called an isometry. The set

of isometries from a space V onto itself form a group with'respect to composition.

3.1.1 Definition. Let (V, f) be a A—hermitian space. The collection of isometries -

from V onto itself is called the unitary group of V', denoted U(V).

If V is a quadratic spacé (i.e. A=1,* = 1), then the unitdry group Uuv)

is called the orthogonal group O(V'). If V is a symplectic space (i.e. A = -1,
* = 1), then U(V) is called the sympiectic group Sp(V). Sometimes U (V) will

be referred to as Uy, (V) when information about dimension is perfinent. At other

times U(V') will be referred to as Uy(V) when information about the A-hermitian
form f is important. |
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Now when the involution * on K is the identity, A must eqﬁal +1or —1. This
is because f(z,y)" = f(z,y) = M(y,@) = Mf(,y). Thus, f(z,y) = Xf(z,y)
for every z,y € V. Hence, A = £1. This, of course, gives rise to a quadratic
space with its orthogonal group in the case A = 1 and a symplectic space with its
symplectic group When A=-1

Consider, then, ';:vhen the invblution on.K is different from the identity.
In this case, in fact, one can assume that A = 1. For when * is not the identity,
recall that Hilbert’s Theorem 90 guarantees the existence of k& € K such that

E(k*)~1 =X since AN = N (A) = 1. Thus, one can replace the A=hermitian f with

the proportional form g = kf. For z,y € V, one sees that g(z,y)* = (kf(z,y))* =

k* f(z,y)* = k*Af(y,z) = kf(y,z) = g(y, ). Thus, g is a 1-hermitian form.
Furthér, the following proposition shows that scaling the A—hermitian form -

in this way does not affect the unitary group.

3.1.2 Proposition. Let (V, f) be a A—hermitian space and k € K. Then
Us(V) = Urs(V)- | -

Proof. Let o € Uf(V). That means f(o(z),0(y)) = f(:c,yh) V z,y € V. Thus,
kf(0(z),09)) = kf(z,y). Hence, o € Ugs(V) and U(V) C Uis(V).

Now consider o € Ugs(V). If 0 € Ugs(V), then kf(o(z),0(y)) =
kf (:c(, y) V z,y € V. However, multiplying both sides of the equation by the field .-
element k=1 gives f(a(:c),orl(y)) = f(z,y) V z,y € V Thus, o € Uf(V) and
Uss (V) C Us(V). Therefore, Us(V) = Ups(V). O

2. Generators of the Unitary Group.

Let Upn(V') be the unitary group of an n—dimensional )\—hefmitian space
'(V, f) over a finite field K with involution * # 1. From Chapter 2, one observes

that if n > 2 then the hyperbolic rank of V is at least one. Hence, V splits as
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‘ V‘ =H_L L, where His a hypérbolic plane with a hyperbolic péir l{ru,,v}, namely,
H=Ku & Kuv with f(u,u) = f(v,v) =0 and f(u,v) = 1.

With this structure in mind, the isometries to be used in the study of U'(V).

‘are now defined. Let A denote the isometry such that A(u) = v, A(v) = A*u and

A|r, = 1. For nonzero € in K define ¢le] in U(V) by ¢[e](u) = eu, le](v) = (¢*) v

and dlellr = 1. Recall C = {c € K | ¢+ Ac* = 0} from Chalptér 1 and for cin C’

define a transvection T'|u,c] in U(V) by -

T[u,c] (z)l= z+ f(z,u)eu for z € V.

For z in L the Eichler.transformation Efu,z] in U(V) is defined by

Blu,z)(z) = 2 = X f(z,u)z + f(z,2)u — M (z,u)q()u

for z € V, where g(z) = 27! f(z,z). Similarly, define T[b, ] .=‘ AT[u,c]A™! and

Ev,z] = AFE[u,z]A™!. Finally, for a vector & in V with q(z) # 0, define the

syrﬁmetry 7[z] by the formula
7lz](2) = 2z — f(z,%)q(z) "'z for zin V.
The remainder of the chapter is devoted to establishing some identities
involving the above isometries which will prove useful in Chapter 4.

3.2.1 Lemma. TJu,dT[u,d] = T[u,c + d].

Proof. For any z € V,
T, YT, d|(2) = 2 + f(z,u)du + F(z + (2, u)du,u)cu
= 2+ (2, u)du + f(z,w)eu+ Flu,u)f(z, wdcu
— 2+ f(z,u)du + f(z,w)cu (since f(u,u) = 0)
=2+ f(zu)(c+ d)u

- Tlu,c+d)(z). O
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3.2.2 Lemma. oT[u,clo™! = T[o(u),d], for any ¢ € U(V).
Proof. For any z € V,

(oTlu, do™)(z) = 0(0™(2) + (o7 (2), w)ew)
= 2+ f(z,0(w)eo (u)

=Tlo(u),c](z). O

3.2.3 Lemma. TJau,c] = T[u,a*ca], for any a € K.
Proof. For any z € V,

Tlau,c](z) = z + f(z, au)cdu
=z + f(z,u)a*cau

= T[u, a*cal(z). O

Note here that there are correspondiﬂg lemmas to 3.2.2 and 3.2.3 involving
T'[v,c]. Their verifications proceed exactly the same way by replaqing u with v.

These correspohding lemmas will be referred to as 3.2.2" and 3.2.3' respectively.
3.2.4 Lemma. ¢[e|T(u,cJd[d " = Tleu, .
Proof.

ST, [~ = Tlolel(), <] by Lemma 322

= Tleu,c]. O
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3.2.5 Lemma. ¢[e]T[v,c|dle]™! = T[(e*)‘lll'v, c].
Proof.

¢le|T[v, c)ple] ™! = T[¢[e](v), ] by Lemma 3.2.2’

=T[(e") v,c. O

3.2.6 Lemma. dle|Adle] ! = dle*e] A. |

Proof. Since all the maps here restrict to 15 on L, it suffices to show that the

maps agree on the basis vectors u and v of H.

Hle]Ale] ™ i u— € u— el — €7 ((¢*)TIv) = (e*e) T

1v = (") = (€")(A'u) — " A"eu = N e"eu.

Ple* el i u— v = ((e*e)*) v = (¢"e) v

(U= Ay - Nefeu. O

3.2.7 Lemma. #[a]g[b] = #lel¢la).

Proof. Here again all maps restrict to 1 on L; thus, agreement on « and v need

‘only be shown.

¢[a]¢[b] s u — bu — bau = abu

tv = (7)o — (5) 7 (a") o = ((ab)") o

d[bldla) : u — au — abu

v = (%) v - (a*)71(p*) v = (‘(ab)*)_l'v. 0O
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3.2.8 Lemma. E[u,:z: +y] = Elu, z]Elu,y] if f(z,y) = (¥, z).
Proof. For any z € v,

Blu, 2](Elu,3)(2)) =Elu, 9)(2) = M (Elu,9](2), v}z
+ F(Blu, )2, 2)u = A (Bl 1)(2), wglo)u

= 2= Muy+ [ v - M v
= Mz = Mz uy+ £ y)u - M (2, W)e(@)u, w)
+ £z = M (2, 0)y + F(2,9)u — M (2,u)a(y)u, z)u
S Mla = M)y fou - M (s ua)u, e

Mt S M wa

“M(z,u)z
+ f(2,z)u Af(z,u) f(y, z)u

~Af (2, u)q(z)u

(since f(u,u) = f(u, ;’C) = f(z,u) = f(v,y) = f(y,u) =0)
= 2= M(z0)(@ +9) + f(z 2+ y)u— Mz v +y)u
(since f(y,z) = f(z,v))

= Efu,z +yl(z). O
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329 Lemma. oE[u,z]c™! = E[o(u),o(z)], for any o € Uv).
. Proof. For any z €V, |
oE[u,z]o™1(2) = a(a"l(z)- —Mf(o7(2),u)z + f(o—i(g), z)u
| = Ao (2), u)g(z)u .
= 2= Mz oW)o(e) + /(@ o(@)o ()
=Mz owgl@)o(u)
= Elo(u),o(z)](2). O

3.2.10 Lemma. Efau,z]= Efu,a*z], for any a € K.

' Proof. For any z €V,

Elau, z)(2) = 2 = M(z, aw)z + f(z,2)an — M (2, aw)g(z)au |
= 2= M(z,0)a*z + f(z,a*)u — Af(z, u)a*ag(z)u
=z =M (z,u)a*c + f(z,0"2)u — Af(z,u)g(a*z)u

=E[u,a*a:-]-(z). a ,.

Again, there are corresponding lemmas involving E[v, z] which are found -
by replacing u by v in Lemmas 3.2.9 and 3.2.10. These will be referred to as 3.2.9/
and 3.2.10’. |

3.2.11 Lemma.. d)[e]E[u,a:]gb[e]‘l = Elu,e*z].
Proof.
$le] Elu, z]¢le] ! = Elgle](u), $le](z)] by Lemma 3.2.9

= Eleu,z] sincez € L

= Elu,e"z] by Lemma 3.2.10. O
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3.2.12 Lemma. ¢[e]E[v,z]d[(]™! = E[v,e1a].
Proof.

$lelElv,2]¢[d ™ = E[gle](v), ¢le](z)] by Lemma 3.2.9'
= E[(e*)'lv,m]l since z € L |

= E[v,e1z] by Lemma 3.2.10". O
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CHAPTER 4
Two-ELEMENT GENERATION OF U(V)

Now that all of the necessary frame work for the'underlying ﬁnife ﬁeld,"
the A—hermitian space over this ﬁeld and the space’s unitary g’roup has been
established, Chapter 4 provides a detailed discussion of the paper’s main result.
”’II‘hé chapter two subsections separate some preliminary information and statement

of the main theorem from the theorem’s proof.

1. Preliminaries.

Let K be a finite field of odd characteristic with involution *. Thus |K| =
g = p™ for some odd prime p and natufal numbér m. Recall from Chapter 1 that
- K is a quadratic extension field of Ky, the fixed field of *. In this context, when
* £ 1, * is the Frébenius automorphism o defined by o(a) = af for @ € K where
|Ko| = £. Let o, 8 be fixed generators of the multiplicative cyciic groups K and K
respectively. Moreover, let (V, f) be an n—dimensional, nonsingular A—hermitian
space over K with its unitary group Un (V). |

Further, it is assumed that n > 2. This is due to the fact thét Ui(V)is
cyclic and, thus, has a single generating element. To see this, consider that for
‘an isometry ¢ in Us(V), ¢ must be defined for z € V by ¢(z) = az where a € K
such that N(a) = aa* = 1. In this case, f(go(:f),go(y)) = f(ax,ay)_: aa* f(z,y) .=
f(z,y.) for all z,y € V. Thus, there is a canonical isomofphism between the .
isometries of Uy(V) and the elements of norm 1 in K. Let G be the subset of.
K containing elements of norm 1. For a,b € G, (ab~?)*ab™! =a*(b~")%ab™! =

a*a(b=1)*b~1 = (b*b)~! = 11 = 1. Hence, G is a multiplicative subgroup of the
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multiplicative, cyclic group K and is, therefore, cyclic. This, of course, means
U1 (V) is cyclic as well.

The problem of two-generating unitary groups for n > 2 has been shown in
part by the works of Ishibashi [12], Earnest and Ishibéshi [7], and Earnest et. al.
[2]. Iﬂ [12], Ishibashi proved that if (V, f) is a nonsingular, isotropic, A-hermitian
space over a finite ﬁeldl of odd characteristic with involution *, then the unitary
. group U (V) is generated by three elements. Further, in fact, he proved that when
the unitary group is the symplectic group Sp(V) then U(V) is generated by just

" two elements. His result is worded below for further reference.

4.1.1 Theorem. (Ishibashi) U(V') is generated by 3 elements and U(V') = Sp(V)

is generated by 2 elements.

In [7] and [2], the case where the unitary group is the orthogonal group was
considered. Here, the restrictions of isotropy and' characteristic were removed. .

The following refinement of theorem 4.1.1 was achieved.

4.1.2 Theorem. (Earnest/Ishibashi et.al) U(V) = O(V) is generated by two

elements.

- In this chapter, it is Theorem 4.1.1 which is again further refined with the

following result.
4.1.3 Theorem. U(V) is generated by two elements.

Although the unitary groups of Theor.em 4.1.3 are still restricted to

~ A—hermitian spaces over finite fields of characteristic not two, the A—hermitian
spaces no longer need the explicit assumption of isotropy. Recall from Chapter 3
that unitary éroﬁps of symplectic, quadratic and A—hermitian spaces where *';E 1

are all that is necessary to consider. Isotropy for all symplectic spaces was shown
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'i.n' Chapter 2. Also, the two-generation problem Iof orthogonal groups for isotropic
as well as anisotropic quadratic spaces was solved by Theorem 4.2.2. Finally, for
n = 2, a A—hermitian space where * # 1 is isometric t§ the hyperbolip plane by
the discussions subsequent to Propositions 2.3.4 and 2.2.4 respectively. Thus for

dimensions greater than 2, a A—hermitian space\where *#£1 spl'itsl asH L L.

Further, Proposition 2.3.4 allows for the assumption that L has an or-
thogonal basis such that L = (a,a,l...,a)(n — 2 a’s for some a e KIfX =
,{ml, Tg,...,ZTn—2} is such a base for L, then one can define an .isométry in U(L)
~ which permﬁtes these basis vectors since f(z;,z;) = f(z;, ;) = a for any choice of
iand j. These kinds of isometries will prove to be particularly useful in generating

the unitary group of a hermitian space.

2, Préof of the Main Theorem.

The pfoof of Theorem 4.1.3 breaks down into threé parts. The ﬁrsf'part is
when * = 1and A = -1 (i.e. U(V) = Sp(V)). This part is"prdyen by Theorem
4.1.1. Part 2 is when * = 1 and A = 1. (i.e. U(V) = O(V)). Part 2 is proven by
Theorem 4.1.2. The third part boils down to* # 1. That is, when U(V) # Sp(V)
and U(V) # O(V). | -

It is part 3 tol which the remainder of this chapter is devoted to achieving.
The proof of part 3 breaks down into three cases based on the dimension n of V'~
over K. They'ar'e n = 2, n > 2 even, and n > 3 odd. The odd dimensional case

will be treated first because of its relative simplicity.

4.2.1 Lemma. Let z € L and o € U(L). Then the subgroup generated by ¢[a]
and AE[u,z]o contains Ao and Elv, Kz]. '

Proof.” Let G.= (la), AEu,z]o).

28




First, the following conjugation will be shown by induction:

$lo) AE[u, slodlo) ™ = ¢lo* o AE[, (o*)ialo. (1)

Let i = 1. ¢[a) AE[u, z]og[a]

=¢lo] Ag[o] ™ $lo] Elu, 2]¢[o] T glefogle] !
. =¢[o* o] AE[u, o*z]o by Lemmas 3.2.6 and 3.2.11.

Now suppose ¢la]i~1 AE[u, zlogla] =+ = pla*a]~ AE[u, (*)alo.
Consider ¢[a]iAE[u, z|odla] |
¢le]' AE[u,z]ogle] ™ = ¢le]¢la]" T AE[u, z]og[e] " H glo]
— d)[a]‘d)[a*a]i"lAE[u, (a*)'z]og[a] ™! (by the inductive hypothesis)
= p[a* o] "1¢[a] AE[u, (a*)i'lm]&d)[a]_l (by Lemma 3.2.7)
= ¢lo*a]' AE[u, (@*)iz]o as in the caée i=1.
 Thus, equation (1) is trﬁe for every i.Z 1. But, ¢la*a] = ¢[afa] = ¢[a£+i]
Bla]*t1. Hencé, for every i 2.1,¢[a]"AE[u,a:]a¢[a]"i =‘¢[a](f+1)iAE[u,aeim]&.
IHowever, this iﬁplies AE[u,ofz]o € G for every i > 1. Therefore, AE[u, Kzlo C
G. | |
So, for v € K, (AE[u,2yz]o)(AE[u,vz]o)™! € G, since the characteristic -
of K is not 2. But (AE[u, 2fyx]a)(AE[u,7x]a)“i '
— AE[u,.2'y:1:]'aa—1E[ul, —vz]A™! = AE[u, 2vz] E[u, —’y:z;]A"i
= AE[u,f);m]A"l (by Lemma 3.2.8 since f(2vz,—yz) = —2v7* f(z, z)
= f(—vz,2vz)) |
= E[v,fy:r] by Lemma 3.2.9. Whence,' E[v,Kz] C G. |
Moreover,E['tl),O:r] =1 € G. Thus E[v, Kz] g G.
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Finally, E[v, —z]AE[u,z]o € G. However, E[v, —z)AE[u, 7)o =
E[v,—z]AE[u,z)A~1Ac = Elv, —2]E[v,z]Ac = Ao. O

4.2.2 Proposition. Let n > 3 be odd. Then U,(V) is generated by ¢[a] and

AE[u,z1]c where o : 3 — 29 — - — :En_g' — 1 for some orthogonal basis of '
L with f(:vz,:cz) = f(zj,2;),1 <4, <n-2.
Proof. Let G = (¢[a}, AE[u,z1]0). By Lemma 4.2.1, Ao and E[v, Kz1] are con-
tained in G. It suffices to show that Efu,z;] is also contained in G, since it is
already known that Un(V) = (¢[a], Ao, Elu, 1)) By [12; P;oposition 3.2) in fhis
case. ' o

Now, E[v,Kz;] C G implies that E[v,A\"!z] € e Conjugatiﬁg this ele-

ment by Ao, one gets

AGE[v, A7 21)(A0) ™ = AcEw, A z1]0 7 AT = AE, Az A
= E[X\*u, A" 1z;) by Lemma 3.2.9
= E[u, A\ "1zy) by Lemma 3.2.10

= E[u, z9) € G.

Continuing' this conjugation process will 'yield Elu,Kz;] and E[v,Kz;] for i =

1,2,...,n — 2. Thus, G contains E[u, ;] which completes the proof. [

4.2.3 Lemma. Let z,y € L with f(z,y) = f(y, z) = 0 and o € U(L), then the
~ subgroup generated by ¢[ca]T[z] and AE[u,ylo contains Ao and E[v, Ky).

Proof. Let G = (¢[a]rls], AE[u, 4]0). Again, consider the conjugation
(¢(e)7[a]) AE(u, y)o($(c)la])~" which is contained in G.
($lalrle])* ABlu, ylo (fialrlel)~ = dlol'rlol A Blu,ylola] 6ol ™,

since ¢[a] € U(H) and 7[z] € U(L) and, thus, ¢[e]r[z] = 7[z]¢[a]. Therefore,
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7[z]*¢[a)* AE[u, ylog[o] ~*7[z] " is obtained by the conjugation. But this is equal
to 7[z)'¢[a) “HEAE[u, atiy)ar]z]~¢ as previously shown in Lemma 4.2.1.
Thus, if 1 is even, one has ¢[a] “+1IAE(u, ay)o where a € K? since 4 is

even. However, this is (¢[e]7[z]) 1A Eu, ay]o since (£+1)i is even. This implies

that AE[u,ay]o € G. Since this can be done for any even integer, AE[u, K*ylo C -

G.
Now, if 7 is odd, then T[x]i¢[a](e+1)iAE[u,aeiy]af[x]—i = 7[z]@[a] “F1IA
Elu, afiylor(z]. Further, since £ is odd, 7[z]¢[a] *+ DA Eu, afiyloT|z]

= ([a]r[z]) ¥t Vir[z] AE[u, oiy]or[z]. This implies that 7[z]AE[u, byloT|x] iAs ,.

contained in G where b € K\ K2.
Let ~ e K2 1If Y€ K é, then 2y € K2 since K has odd characteristic and
2 € Ko € K? (Lemma 1.2.8). So (AE[u,2vylo)(AEu,vylo)™! = Elv,vy] is
contained in G as shown in Lemma 4.2.1. | |
Let v € K\K?2. If y € K\K?, then 2y € K\K? as above.
So (7[z] AE[u, 2vy)o(z)) (r[e] AE[u, yyloT[z]) ™!

= 7[z)AE[u, yylo A~ 7[z] by Lemma 3.2.8
= 7{[z)E[v, vy]7[z] by Lemma 3.2.9

= Elv,vy] € G since f(z,y) = f(y,z) = 0.

Thereflore,. Efv, Ky is again a subset of G.
| Finally, E{v, —y] AE[u,y]o € G since 1 € K? and E[v, —y)AE(u,y)o = Ao

as in Lemma 4.2.1 which ends the proof. 0O
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4.2.4 Proposition. Let n > 2 be even. Assume that —\ = o?**! for some
natural number k or k = 0. Then U,(V) is generated by ¢[o]r[z1 — z,—2] and

AE[u,zolo where 0 : €1 — T+ -+ — Tp—g — T1.

Proof. Let G= (pla]r[z1 = zpn—2], AE[u,z2)0). By Lemma 4.2.3, G contains Ao
and Efv, Kzs]. It only remains to show that G contains Efu, ], since Un(V) =
{(pla]r[z1 — Tn-2], Ao, Elu,z1]) as proven in {12; Proposition 3.3]. | }
Employing the strategy of conjugation by Ao, one sees |
 (A0)E[v, Kz} (Do)t = AcE[v, Kzz)o~ A~ = AE[v, K$3]A_i
= E[Mu, Kz3) = Efu, \Kz3]. Again, the last two equalities come by way of Lem-
mas 3.2.9 and 3.2.10 as in Proposition 4.2.2. Moreover, E[u, AKz3] = E[u, Kz3]
‘since A € K. | '
lBy repeating the conjugatilon and using the fact that n—2 is éven since n is
even, it follows that G contains E[v, Kz;) where i = 2,4,--+ ,n -2 and E[u, Kz;]
where j = 1,3,...,n l—3. Thus, Elu, Kz1] is contained in G. So, E[u,xl] is an
element of G. ' |
Note that Lemma 4.2.3 cannot be applied directly 'Wheﬁ n = 4, for then
n—2=2and f(z; — z9,z2) # 0. However, it caﬁ be seen from the proof of that
lemma that E[v,yz3] € G for all v € K2, lIn particular, Efv,z3) € G, and so
E[v,z3)"! = E[v,~z3] € G. Then E[v, —z3)AE|u, z3)0 = AE[u, —:1:2]E[u,:1:2]a'='.
Ao € G. Finally, (Ac) ' E[v, z3](Ao) = Elu, 71} € G by Lemma 3.2.9. O

4.2.5 Proposition. Let n > 2 be even. Assume that —\ = a?* for some natural
number k or k = 0. Then U, (V) is generated by @[a}7[t) — Tn_g) and AE[u, z5)o

where o : x1 — Tg — +++ — Tp_3 — T1.

Proof. Again, let G = (d[o]r[z1 — Tn-2], AE[u, z3)o). The proof proceeds exactly

-the same as that in Proposition 4.2.4. Note here, however, that when conjugating

32




by Ao, one gets Efv, Kz;] where i = 2,4,..,n —4 and E[u,Kz;] where j =
3,..,n — 3 contained in G. When Elu, Kzn_3] is conjugated by Aa, it follows
that E[v, Kz;] is contained in G. Repeating the conjugation on this second pass
puts Efv; Kz,,] where m = 1,3,--- ,n — 3 and E[u, Kz,] where r=2,4,.,n—4
in G. Thus, conjuéating E[v, Kz,,—3] by Ao on this secénd pass places the desired
Efu, Kz] in G. | ’

As in the proof of Propositionl4.2.4, the case n = 4 needs to be treated

separately. Note that in this case ¢ = 1. As before, it has been shown that
Elv, 5] € G. This implies that Ev, —z2] € G and Efv, —z2]AEfu, 72} = .
AE[u, —z3)Eu,z9] = A e G’.'Als'f[xl — z5] = 772 — 2], it follows from Propo-
sition 3.4 of [12] that U, (V) = (¢lo]r[z1 — z2], A, Elu, z2]). So it remains only to
show that Efu, 2] € G. But Ffu,z2] = A7 E[v, 2] A € G, since E[v, z3] € G and
AeG. O | |

Finally, in the two dimensional case, it suffices to only look at the generators
of U(H). Recall from the previous two chapters that if dimV =2, V = IHI In this

case, the following result is obtained.

4.2.6 Propoéition. IfC = {0}, then U(H) = (A, ¢[a]); otherwise U(H) = (¢[a], . '.

ATlu,c]) where ¢ is any nonzero element of C.

Proof. In [10; Lemma 2.3}, Ishibashi showed that if C = {0}, then U (IHI) -
(A, dla]) and if C # {0}, then U(H) = (A, dla], Tlu, c]) where ¢ € C. Tt will

be shown that in this latter case U(H) = (¢[a], AT[u, d]).
So let C contain ¢ # 0. As shown in Chapter 1, C = {cﬁill 1=1,2,..,0-1}
where 8 is a fixed generator of Ko. Thus, Tu, C] = {Tu, Bc]}. However, consider -
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_the conjugation of ATTu, c] by ¢[8].

S16| AT, 661 = S18)AS81 BT, 4181
= @[B*B|AT[Bu,c] by Lemmas 3.2.6 and 3.2.4

= ¢[B% ATu, B%c] by Lemma 3.2.3 and sinlce B € K.

Suppose ¢[8]~1 ATlu, dgl8]=*+ = ¢lB*¢- VAT u, 6.
Consider BB AT [u, c|#[B] . |

$181 DT T, A48 = HOI8 ATl o8]~ gl8) |
= ¢[ﬂ]¢[ﬂ2‘?—1>]AT[u, ﬂ2<i-1>c]¢[ﬂ]—1 (by the inductive supposition)
= BBV G[B|AT[u, B8] (by Lemma 3.2.7)

= ¢[ﬁz<i-1>]¢[ﬂ2]AT[u, ﬂ232<i-1>c] (as above) |

= ¢[6%| AT, 5% |

= 9B AT, ¥

Hence, @[B! AT [u, c|¢[B]~ = #[B]|2 AT [u, BZic] for every integer i > 1 by
induction. | - '

This implies that for any ¢ > 1, AT[u, %c] is an element of (8[8], AT u, ).
Further, let 7 and s be arbitrary even intgers, then (98], AT'[u,c]) contains
(ATu, Bd) " (AT[u, B7e]) = T(u, ~B°) A~ AT (u, 7¢) = T(u, (8" - B*)e).
Thus, T(u, Ex,¢) € (B8], AT[u, c]). " '

If £k, = Ko, then T[u,Koc] = T(u,C) C ([0, AT[u,c]) by Lemma.
1.2.10. Specifically, T'[u,c] € (qS[ﬂ],AT[u,c]). This, of course, implies that A € |

(¢(B), AT (u, c)). Moreover, since f is contained in the multaplicative 6yclic group,
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K, generated by a, it follows that {A,T[u,d|} C (¢[a], AT|u,c]). This provides
the result. | | | |

I & \{£1}, then for | Kol > 3, there exists § € Ko such that § # £1. Thus,
Tu,éc] and T'[u, (1 6)c] are elements of T(u,Ek,cl. Then T[u, 6T [u, (1 —'6)c] =
T[u, ] € (¢[6], AT[u, c]) by Lemma 3.2.1. Hence, the argument proceeds as before
and U(H) = (¢[a), AT[u c)).

Therefore, consider the case when |Kp| = 3. Then Ky & {—i,O, 1} end
for ease of discussion, take Ko = {—1,0,1}. Suppose, then, that K is a two
dimensional extension of {—1,0,1}. Here, K is a field with 9 elements. In this
case also, 8 = —1. Now, N (a) = aa* = £1, since the norm map is sufjective. But
N(a) =1 implies that N(z) = 1 for all € K. Thus, N(a) = -1 = B.

Consider the following conjugation.

SlalAT(u, cigla] ™ = ¢la)Adfo] ™ ¢lolTlu, ool
= ¢laa*)|AT[u, [ac*]c]
= $(B)AT (u, Be).

But this implies that AT[u, 8c] = AT[u,—d] is confained in (¢[a], AT[u,c]) as
before. That means (ATTu, )" HAT[u, —d]) = T[u, —e]A‘iAT[u, -

= T(u,—c|T[u,—c] = T[u,c] is an element of (p[a], AT[u,c]). Again, this pets
A in (¢[a), AT[u,¢]) and U(H) = (¢[a], AT[u,c]). This completes the proof of.
Proposition 4.2.6. O - ' R

Theorem 4.1.3 is now clear by Theorems 4.1.1 and 4.1.2 and Propositions
422,424,425, and 4.2.6. |
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